Details



A COMPREHENSIVE ANALYSIS OF FLUID FLOW IN IMPINGING JET SYSTEM

Dr Arun Prakash Singh

51-69

Vol. 5, Jan-Jun, 2017

Date of Submission: 2017-03-03 Date of Acceptance: 2017-03-20 Date of Publication: 2017-03-28

Abstract

Examples of impinging jets include quenching of metals and glass, cooling and drying of paper and other materials, drying of food products for e.g. freezing , drying and baking , textiles, age hardening, cooling of gas turbine blades and outer wall of the combustion chamber, manufacturing process such as grinding , deicing of aircraft system, thermal management of electronic equipments, anti-sediment jets in thermal and nuclear power plants, control of thermo-acoustic instability in gas turbine combustors, and safety requirements in the storage of cylinders containing liquefied gas etc. Investigators presented those three regions characterize the development of the single impinging jet as it flows from the nozzle toward the impingement surface namely, the free-jet region, the impingement region and the wall jet region

References

  1. Chan T. L. International Journal of Heat and Mass Transfer. 2002. 45. 993-1006p.
  2. Sarkar A. et al. J. Food Sci. 2004. 69(4). 113-122p.
  3. Moraga N.O.et al. Int. J. Heat Mass Transfer. 2000. 43. 53–67p.
  4. Moreira R.G. J. Food Eng. 2001. 49 (4). 291–295p.
  5. Olsson E.E.M. et al. J. Food Eng. 2005. 67. 273–280p.
  6. Hoefler F. et al. Journal of Turbo machinery. 2012. 134 (3). 031022.
  7. O’Donovan T.S. et al. J. Mechanical Engineering Science. 2006. 220 (6).837-845p.
  8. Garimella S.V.et al. ASME Journal of Electronic Packaging. 2001. 123. 165-172p.
  9. Liu T.et al. Int. J. Heat Mass Transfer. 1996. 39. 3695–3706p.
  10. Didden N.et al. J. Fluid Mech. 1985. 160. 235–256p
  11. Landreth C.C et al. Expt. Fluids. 1990. 9. 74–84p.
  12. Cornaro C.et al. Int. J. Therm. Sci. 2001. 40. 890-898p.
  13. Lee D.H.et al. Int. J. Heat Fluid Fl. 1997. 18. 160-169p
  14. Sparrow E.M.et al. J. Heat Transfer-Trans. ASME. 1984. 106. 570-577p.
  15. Tawfek A.A. Heat Mass Transfer. 1999. 35. 327-333p.
  16. Singh D.et al. Int. J. Heat Mass Transfer. 2013. 60. 672-688p.
  17. Puneet G.et al. International Journal of Thermal Sciences. 2009. 48. 602–617p.
  18. Livingood J.N.B.et al. A lit. survey, NASA Tech. Memo.1970. NASA TM X-2778.
  19. H. Martin. Advances in Heat Transfer. 1977. 13. 1–60p.
  20. Jambunathan K.et al. Int. Journal of Heat and Fluid Flow. 1992. 13. 106–115p.
  21. Viskanta R. Experimental Thermal and Fluid Science . 1993. 6. 111–134p.
  22. Gardon R.et al. Int. Developments in Heat Transfer, ASME. 1962. 454–460p.
  23. Lytle D.et al. Int. Journal of Heat and Mass Transfer. 1994. 37. 1687–1697p.
  24. Gau C.et al. J. Heat Transfer. 1991. 113. 858-864p.
  25. Choi M.et al. Int. J. Heat Mass Transfer. 2000. 4. 1811-1822p.
  26. LIN Z.H.et al. Int. J. Heat Mass Transfer. 1997. 40. 1095-1107p.
  27. Wadsworth D.C.et al.ASME J. Heat Transfer.1990. 112. 891-898p.
  28. Nuntadusit C.et al. Int. Com. in Heat Mass Transfer.2012. 39. 1154–1164p.
  29. Katti V.et al. Experimental Thermal and Fluid Science. 2008. 33. 84–95p.
  30. Brizzi L.E.et al. Journal of Thermal Science. 2000. 9. 217–223p.
  31. Bouchez J.P. International Journal of Heat and Mass Transfer. 1975. 18. 719–730p.
  32. Lytle D.et al. Int. J. Heat Mass Transfer. 1994. 37. 1687–1697p.
  33. Tanaka E. ASME. 1974. 17. 920–927p.
  34. Abdel-Fattah. Exp. Therm. Fluid Sci. 2007. 31. 1060–1072p.
  35. Martin H. Adv. Heat Transfer. 1977. 13. 1–60p.
  36. Polat S. et al. a review, Ann. Rev. Numer. Fluid Mech. Heat Tra. 1989. 2. 157–197p.
  37. Koopman R.N. Int. J. Heat Mass Transfer. 1976. 19. 673–683p.
  38. Koopman R.N. Thesis. University of Minesota. 1975.
  39. Mikhai S. Heat Transfer. 1982. 3. 377–382p.
  40. Yang Y. Numer. Heat Transfer.Part A. 1998. 33. 23–37p.
  41. HuberA.M. ASME J. Heat Transfer. 1994. 116. 570–576p.
  42. Saad N.R. Int. Heat Fluid Flow. 1992. 13. 2–14p.
  43. Colucci D.W. Expt. Thermal Fluid Sci. 1996. 13. 71–80p.
  44. Brignoni L.A. et al. Int. J. Heat Mass Transfer. 2000. 43. 1133–1139p.
  45. Fitzgerald J.A. et al. J. Heat Transfer. 1997. 119. 630–632p.
  46. Lee J. et al. Int. J. Heat Mass Transfer. 2000. 43. 3497–3509p.
  47. Fitzgerald J.A. et al. Int. J. Heat Mass Transfer. 1998. 41. 1025–1034p.
  48. Kataoka K. et al. Int. J. Heat Mass Transfer. 1987. 30. 559–567p.
  49. Reeder M.F. et al. J. Fluid Mech. 1996. 311. 73–118p.
  50. Gardon R. et al. Int. J. Heat Mass Transfer. 1966. 8. 1261–1272p.
  51. Hoogendoorn C.J. et al. Int. J. Heat Mass Transfer. 1977. 20. 1333–1338p.
  52. Koseoglu M.F. et al. Int. J. Therm. Sci. 2010. 49. 1417–1426p.
  53. Colucci D.W. et al. Exp. Therm. Fluid Sci. 1996. 13. 71–80p.
  54. Ireland P.T. et al. AGARD Conf. Proc. 1985. 390. 28p.
  55. Baughn J.W. Int. J. Heat Fluid Flow. 1995. 16. 365-375p.
  56. Yan W.M. et al. Int. Journal of Heat and Mass Transfer. 2004. 47. 5235–5245p.
  57. Nuntadusit C. et al. Int. Com. in Heat and Mass Transfer. 2012. 39.202–207p.
  58. SinanCaliskan. et al. Int. Journal of Heat and Mass Transfer. 2014. 75. 685–703p.
  59. Gao N. et al. International Journal of Heat and Fluid Flow. 2006. 27. 33–41p.
  60. Gao N. et al. Int. Journal of Heat and Mass Transfer. 2003. 46. 2557–2569p.
  61. Schertzer M.J. et al. Int. Journal of Heat and Mass Transfer.2006. 49. 4200–4208p.
  62. MiroslawZukowski. Int. Journal of Heat and Mass Transfer.2013. 57. 484–490p.
  63. Khammar M. et al. Int. Journal of Heat and Mass Transfer. 2014. 76. 144–152p.
  64. Patil V.A. et al. Measurement Science and Technology. 2005. 16. 472-476p.
  65. Martin R.H. et al. Int. J. Therm. Sci. 2011. 50. 1199–1206p.
  66. Gulati P. et al. Int. J. Therm. Sci. 2009. 48. 602–617p.
  67. Fenot M. et al. Int. J. Therm. Sci. 2005. 44. 665–675.
  68. Narayanan V. et al. Int. J. Heat Mass Transfer. 2004. 47. 1827–1845p.
  69. Luo K.H. et al. J. Eng. Math. 1997. 32. 121–142p.
  70. Jiang X. et al. Theor. Comput. Fluid Dyn. 2000. 14. 55–74p.
  71. Chung Y. et al. Int. J. Heat Fluid Flow. 2002. 23. 592–600p.
  72. Tsubokura M. et al. Int. J. Heat Fluid Flow. 2003. 24. 500–511p.
  73. Hattori H. et al. Int. J. Heat Fluid Flow. 2004. 25. 749–758p.
  74. Satake S.I. et al. Int. J. Num. Meth. Heat Fluid Flow. 1998. 8. 768–780p.
  75. Mathew J. et al. Phys. Fluids. 2002. 14. 2065–2072p.
  76. Ooi A. et al. J. Fluid Mech. 1999. 381. 141–174p.
  77. Martin Draksler. et al. Int. Journal of Heat and Fluid Flow. 2014. 46. 147–157p.
  78. Kharoua N. et al. J. Eng. 2011. 8. 40–48p.
  79. Hadz M. Ph.D. thesis, Delft University of Technology, Netherlands. 2006.
  80. Gant S. et al. Springer, Netherlands. 2010 .13. 217–222p.
  81. Beaubert f. et al. C. R. Mecanique, 2002. 330. 803–810p.
  82. Gao S. et al. Int. J. Heat Fluid Flow. 1995. 16. 349–356p.
  83. Ha¨llqvist T Licentiate Thesis, Royal Ins. of Technology, Stockholm, Sweden. 2003
  84. Olsson M. et al. Phys. Fluids. 10 (2). 476–486p.
  85. Yue-Tzu Yang. et al. Int. Journal of Heat and Mass Transfer. 2007. 5o. 799–807p.
  86. Chen C.J. et al. Fundamentals of Turbulence Modeling. 1998.
  87. Bouainouche M. et al. Int. J. Numer. Methods Heat Fluid Flow. 1997. 7. 548–564p.
  88. Craft T.J. et al. Int. J. Heat Mass Transfer. 1993. 36. 2685–2697p.
  89. Dianat M. et al. The Pennsylvania State University, University Park, 1995.
  90. Craft T.J. et al. Int. J. Heat Fluid Flow. 1996. 17. 108–115p.
  91. Neil Zuckerman. et al. Journal of Heat Transfer. 2005. 127.
  92. Chuang S.H. Int. J. Numer. Methods Fluids. 2000. 33. 475–498p.
  93. Craft T.J. et al. Int. J. Heat Mass Transfer. 1993. 36. 2685–2697p.
  94. Merci B. et al. Int. J. Numer. Methods Heat Fluid Flow. 2003. 13. 110–132p.
  95. Papageorgakis G.C. et al.Numer. Heat Transfer. 1999. 35. 1–22p.
  96. Hosseinalipour S.M. et al.Numer. Heat Transfer Part A. 1995. 28. 647–666p.
  97. Mujumdar A.S. et al. Appl. Therm. Eng. 2005. 25. 31–44p.
  98. Gibson M.M. et al. Int. J. Heat Fluid Flow. 1997. 18. 80–87p.
  99. Wilcox D.C. DCW Industries. 2002.
  100. Park T.H. Int. J. Heat Mass Transfer. 2003. 46. 251–262p.
  101. Heyerichs K. Int. J. Heat Mass Transfer. 1996. 39. 2385–2400p.
  102. Behnia M. et al. Int. J. Heat Mass Transfer. 1998. 41. 1845–1855p.
Download PDF
Back