Details



A COMPREHENSIVE ANALYSIS OF METAVERSE TECHNOLOGIES TO ATTEMPT A TREND ANALYSIS OF THE EMERGING CONCEPTUAL AND APPLIED ASPECTS OF METAVERSE

Ahmed Abbas Naqvi

23-30

Vol 15, Jan-Jun, 2022

Date of Submission: 2022-01-21 Date of Acceptance: 2022-02-25 Date of Publication: 2022-03-08

Abstract

Meta-verse is a brand-new application that makes use of several cutting-edge technologies. It is social, multi-technological, and hyper-spatiotemporal. In recent years, techniques for deep learning have made significant advancements. The nonlinear function optimization technique of particle swarms was introduced. Verifying the accuracy of PSO and deep learning for meta-verse trend analysis was a major objective of the proposed research. The proposed work's precision was compared to that of previous work in this study. The proposed work will replica relojes employ Meta-verse, Deep Learning, PSO, and Trending Analysis in a real-world scenario. The work that is being proposed offers a lot of flexibility and options. Wish you fake rolex find your UK best replica breitling watches online.
Cheap Swiss omega fake watches UK with best movements are suited for men and women.
2023 UK perfect replica cartier watches with high quality on sale.

References

  1. J. Udell, (2006), The Social Metaverse., InfoWorld, vol. 28, no. 42, p. 48, [Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=2 2943027&site=ehost-live.
  2. Ning, Huansheng & Wang, Hang & Lin, Yujia & Wang, Wenxi & Dhelim, Sahraoui & Farha, Fadi & Ding, Jianguo & Daneshmand, Mahmoud. (2021). A Survey on Metaverse: the State-of-the-art, Technologies, Applications, and Challenges.
  3. L.-H. Lee et al., (2021), All One Needs to Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda, vol. 14, no. 8, pp. 1–66, 2021, [Online]. Available: http://arxiv.org/abs/2110.05352.
  4. S. G. Lee, S. Trimi, W. K. Byun, and M. Kang, (2011), Innovation and imitation effects in Metaverse service adoption, Serv. Bus., vol. 5, no. 2, pp. 155–172, 2011, doi: 10.1007/s11628-011-0108-8.
  5. M. O. Okwu and L. K. Tartibu, (2021), Particle Swarm Optimisation, Stud. Comput. Intell., vol. 927, pp. 5–13, 2021, doi: 10.1007/978-3-030-61111-8_2.
  6. W. B. Langdon and R. Poli, (2007), Evolving problems to learn about particle swarm optimizers and other search algorithms, IEEE Trans. Evol. Comput., vol. 11, no. 5, pp. 561–578, 2007, doi: 10.1109/TEVC.2006.886448.
  7. R. Poli, J. Kennedy, and T. Blackwell, (2007), Particle swarm optimization: An overview, Swarm Intell., vol. 1, no. 1, pp. 33–57, 2007, doi: 10.1007/s11721-007-0002-0.
  8. A. Atyabi and S. Samadzadegan, (2011), Particle swarm optimization: A survey, Appl. Swarm Intell., no. May, pp. 167–177, 2011.
  9. D. Venter, (2003), Introduction, Soc. Transit., vol. 34, no. 2, pp. 197–205, doi: 10.1080/21528586.2003.10419092.
  10. Z. Wen and T. Li, (2014), Preface, Adv. Intell. Syst. Comput., vol. 279, pp. v–vi, doi: 10.1007/978-3-642-54924-3.
  11. R. J. Kuo and C. W. Hong, (2013), Integration of genetic algorithm and particle swarm optimization for investment portfolio optimization, Appl. Math. Inf. Sci., vol. 7, no. 6, pp. 2397–2408, doi: 10.12785/amis/070633.
  12. R. J. Kuo, Y. J. Syu, Z. Y. Chen, and F. C. Tien, (2012), Integration of particle swarm optimization and genetic algorithm for dynamic clustering, Inf. Sci. (Ny)., vol. 195, pp. 124–140, doi: 10.1016/j.ins.2012.01.021.
  13. Y. Mehta, N. Majumder, A. Gelbukh, and E. Cambria, (2020), Recent trends in deep learning based personality detection, Artif. Intell. Rev., vol. 53, no. 4, pp. 2313–2339, doi: 10.1007/s10462-019-09770-z.
  14. G. Haskins, U. Kruger, and P. Yan, (2020), Deep learning in medical image registration: a survey, Mach. Vis. Appl., vol. 31, no. 1, doi: 10.1007/s00138-020-01060-x
  15. L. Liu et al., (2020), Deep Learning for Generic Object Detection: A Survey, Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, doi: 10.1007/s11263-019-01247-4.
  16. Zekai Sen, (2011), Innovative Trend Analysis Methodology, Journal of Hydrologic Engineering, vol. 17, no. 9, pp. 1042–1046, 2012, doi: 10.1061/(asce)he.1943- 5584.0000556.
  17. M. Ay and O. Kisi, (2015), Investigation of trend analysis of monthly total precipitation by an innovative method, Theor. Appl. Climatol., vol. 120, no. 3–4, pp. 617–629, doi: 10.1007/s00704-014-1198-8.
  18. H. Feidas, C. Noulopoulou, T. Makrogiannis, and E. Bora-Senta, (2007), Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955- 2001, Theor. Appl. Climatol., vol. 87, no. 1–4, pp. 155–177, doi: 10.1007/s00704-006-0200-5.
  19. J. A. M. Burkholder et al., (2006), Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary: A decadal study of anthropogenic and climatic influences, Limnol. Oceanogr., vol. 51, no. 1 II, pp. 463–487, doi: 10.4319/lo.2006.51.1_part_2.0463.
  20. T. Caloiero, R. Coscarelli, and E. Ferrari, (2018), Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy, Water Resour. Manag., vol. 32, no. 15, pp. 4971–4983, doi: 10.1007/s11269-018-2117-z.
  21. H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, (2019), Deep learning for time series classification: a review, Data Min. Knowl. Discov., vol. 33, no. 4, pp. 917–963, doi: 10.1007/s10618-019-00619-1.
  22. G. Ras, M. van Gerven, and P. Haselager, (2018), Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges, Explainable and Interpretable Models in Computer Vision and Machine Learning, Springer International Publishing, pp. 19–36, doi: 10.1007/978-3-319-98131-4_2.
  23. D. Banerjee et al., (2017), A deep transfer learning approach for improved post-traumatic stress disorder diagnosis, Proc. - IEEE Int. Conf. Data Mining, ICDM, vol. 2017-November, pp. 11–20, doi: 10.1109/ICDM.2017.10.
  24. R. Leenes, (2013), Privacy Regulation in the Metaverse, Cyber Crime, vol. 262, pp. 557–570, doi: 10.4018/978-1-61350-323-2.ch307.
Download PDF
Back