Details



REVIEW IN EFFECT OF CATALYSIS IN ANY ORGANIC REACTION

Dr. Nagham Mahmood Aljamali, Hussein Ali Ahmed

7-17

Vol 12, Jul-Dec, 2020

Date of Submission: 2020-06-03 Date of Acceptance: 2020-07-01 Date of Publication: 2020-07-05

Abstract

This review involved effect of catalysts on any chemical reaction, any reaction proceeds because the reaction products are more stable than the reactants and starting materials. The un catalyzed reaction is slow. In fact, simplest example: the decomposition of hydrogen peroxide is so slow that hydrogen peroxide solutions are commercially available. This reaction is strongly affected via catalysts like manganese dioxide, or the enzyme peroxidase in organisms, reduction and oxidation reactions.

References

  1. P. Degennes . Soft Matter ., Rev. Mod. Phys., 64 (3) (1992), pp. 645-648
  2. M. Lattuada, T.A. Hatton. Synthesis, properties and applications of Janus nanoparticles., Nano Today, 6 (3) (2011), pp. 286-308.
  3. Y. Song, S. Chen . Janus nanoparticles: preparation, characterization, and applications., Chem. Asian J., 9 (2) (2014), pp. 418-430.
  4. F. Liang, C. Zhang, Z. Yang. Rational design and synthesis of Janus composites Adv. Mater., 26 (40) (2014), pp. 6944-6949
  5. A. Perro, F. Meunier, V. Schmitt, S. Ravaine. Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions., Colloids Surf. Physicochem. Eng. Asp ., 332 (1) (2009), pp. 57-62.
  6. Miad Mohmed ,Nagham Mahmood Aljamali ,Sabreen Ali Abdalrahman., Wassan Ala Shubber ., 'Formation of Oxadiazole Derivatives Ligands from Condensation and Imination Reaction with References To Spectral Investigation, Thermal and Microbial Assay'., Biochem. Cell. Arch., 2018 ,18, 1, pp. 847-853.
  7. S. Pradhan, L.-P. Xu, S. Chen. Janus nanoparticles by interfacial engineering. Adv. Funct. Mater., 17 (14) (2007), pp. 2385-2392.
  8. Wang, Cuiling; Yan, Jiaxu; Du, Mo; Burlison, Joseph A.; Li, Chi; Sun, Yanni; Zhao, Danqing; Liu, Jianli (2017). 'One step synthesis of indirubins by reductive coupling of isatins with KBH 4' . Tetrahedron . 73 (19): 2780–2785. doi:10.1016/j.tet.2017.03.077.
  9. Nagham Mahmood Aljamali., 'The Various Preparation Methods in Synthetic Chemistry'.,1 Edt. ,Evincepub Publishing house, 2019., ISBN :978-93-88277-82-2
  10. Nagham Mahmood Aljamali. 'Reactions and Mechanisms'.,1 Edt., IJMRA Publication ,2018 .,ISBN : 978- 93-87176-25-6
  11. Matheus ME, de Almeida Violante F, Garden SJ. Isatins inhibit cyclooxygenase-2 and inducible nitric oxide synthase in a mouse macrophage cell line. Eur J Pharmacol. 2007; 556 :200–6.
  12. Nagham Mahmood Aljamali . 'Experimental Methods for Preparation of Mannich Bases, Formazan, Normal and Cyclic Sulfur Compounds', 1st edition Evince pub Publishing House;2018, ISBN: 978-93-87905-19-1.
  13. Nagham Mahmood Aljamali., 'Alternative Methods in Organic Synthesis' .,1th–Edition, Eliva Press SRL, 2020 ., ISBN: 9798680201176.
  14. Nagham Mahmood Aljamali. 2016. ' Synthesis and Biological Study of Hetero (Atoms and Cycles) Compounds', Der PharmaChemica, 8,6, 40-48.
  15. A. Perro, S. Reculusa, E. Bourgeat-Lami, E. Duguet, S. Ravaine. Synthesis of hybrid colloidal particles: from snowman-like to raspberry-like morphologies Colloids Surf, Physicochem. Eng. Asp., 284 (2006), pp. 78-83
  16. M. Pera-Titus, L. Leclercq, J.-M. Clacens, F. De Campo, V. Nardello-RatajPickering interfacial catalysis for biphasic systems: from emulsion design to green reactions., Angew Chem. Int. Ed., 54 (7) (2015), pp. 2006-2021
  17. S.U. Pickering. CXCVI.—emulsions. J. Chem. Soc. Trans., 91 (0) (1907), pp. 2001-2021.
  18. M. Destribats, S. Gineste, E. Laurichesse, H. Tanner, F. Leal-Calderon, V. Heroguez. Pickering emulsions: what are the main parameters determining the emulsion type and interfacial properties? Langmuir, 30 (31) (2014), pp. 9313-9326.
  19. Z. Fan, A. Tay, M. Pera-Titus, W.-J. Zhou, S. Benhabbari, X. Feng, et al.Pickering Interfacial Catalysts for solvent-free biomass transformation: physicochemical behavior of non-aqueous emulsions. J. Colloid Interface Sci., 427 (2014), pp. 80-90
  20. Imad Kareem Alwan Alsabri, Hasaneen Kudhair Abdullabass ,Nagham Mahmood Aljamali ., Invention of (Gluta.Sulfazane-Cefixime) Compounds as Inhibitors of Cancerous Tumors., Journal of Cardiovascular Disease Research, 2020,11, 2., 44-55 ., DOI: 10.31838/jcdr.2020.11.02.09
  21. B.P. Binks. Particles as surfactants: similarities differences., Curr. Opin. Colloid Interface Sci., 7 (1-2) (2002), pp. 21-41
  22. B.P. Binks, P.D.I. FletcherParticles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles Langmuir , 17 (16) (2001), pp. 4708-4710.
  23. T. Ondarcuhu, P. Fabre, E. Raphael, M. Veyssie. Specific properties of amphiphilic particles at fluid interfaces., J. Phys., 51 (14) (1990), pp. 1527-1536.
  24. C. Casagrande, P. Fabre, E. Raphael, M. VeyssieJanus beads: realization and behavior at water oil interfaces., Europhys. Lett., 9 (3) (1989), pp. 251-255
  25. Nagham Mahmood Aljamali., 2015. Synthesis and Chemical Identification of Macro Compounds of (Thiazol and Imidazol)'.,Research J. Pharm. and Tech, 8,1, 78-84., DOI: 10.5958/0974-360X.2015.00016.5.
  26. W.-J. Zhou, L. Fang, Z. Fan, B. Albela, L. Bonneviot, F. De Campo. .Tunable catalysts for solvent-free biphasic systems: pickering interfacial catalysts over amphiphilic silica nanoparticles., J. Am. Chem. Soc., 136 (13) (2014), pp. 4869-4872
  27. Mestaf M, Nawfel Muhammed Baqer Muhsin., NeuroQuantology, 2019.,17,11, 11-16 .,10.14704/nq.2019. 17.11.NQ19108.
  28. Miad Mohmed ,Nagham Mahmood Aljamali ,Sabreen Ali Abdalrahman., Wassan Ala Shubber ., 'Formation of Oxadiazole Derivatives Ligands from Condensation and Imination Reaction with References To Spectral Investigation, Thermal and Microbial Assay'., Biochem. Cell. Arch., 2018 ,18, 1, pp. 847-853.
  29. Nagham Mahmood Aljamali.,Synthesis of Antifungal Chemical Compounds from Fluconazole with (Pharma-Chemical) Studying, Research journal of Pharmaceutical, biological and chemical sciences, 2017, 8 (3), 564 -573.
  30. Mehta SL, Manhas N, Raghubiz R. Molecular targets in cerebral ischemia for developing novel therapeutics . Brain Res Rev. 2007;54:34–66
  31. Nawfel Muhammed Baqer Muhsin, Hayder H K, Noor H D, Nagham Mahmood Aljamali., 'Preparation of Chemical Inhibitors to Treat the Corrosion and Erosion of Machines', International Journal of Engineering, Applied and Management Sciences Paradigms.,2019, 54,3,89-93
  32. Meaad M ,Nagham Mahmood Aljamali ,Nadheema A A .,'Preparation,Spectral Investigation, Thermal Analysis, Biochemical Studying of New (Oxadiazole -Five Membered Ring)-Ligands'., Journal of Global Pharmacy Technology,2018;10,1,20-29
  33. J. Faria, M.P. Ruiz, D.E. ResascoPhase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles., Adv. Synth. Catal., 352 (14-15) (2010), pp. 2359-2364.
  34. Y. Liu, J. Hu, X. Yu, X. Xu, Y. Gao, H. Li. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface., J. Colloid Interface Sci., 490 (2017), pp. 357-3564.
  35. Z.W. Seh, S. Liu, S.-Y. Zhang, M.S. Bharathi, H. Ramanarayan, M. Low. Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis., Angew Chem. Int. Ed., 50 (43) (2011), pp. 10140-10143.
  36. S. Pradhan, D. Ghosh, S. Chen. Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol., Acs Appl. Mater. Interfaces , 1 (9) (2009), pp. 2060-2065.
  37. A.A. Ismail, D.W. Bahnemann, I. Bannat, M. Wark Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficienciesJ. Phys. Chem. C., 113 (17) (2009), pp. 7429-7435
  38. Masel, Richard I. (2001) Chemical Kinetics and Catalysis. Wiley-Interscience, New York. ISBN 0-471-24197-0.
  39. Laidler, K.J. and Meiser, J.H. (1982) Physical Chemistry, Benjamin/Cummings, p. 425. ISBN 0-618-12341-5.
  40. Laidler, Keith J.; Meiser, John H. (1982). Physical Chemistry. Benjamin/Cummings. pp. 424–425. ISBN 0-8053-5682-7
  41. Atkins, Peter; de Paula, Julio (2006). Atkins' Physical Chemistry (8th ed.). W.H.Freeman. p. 839. ISBN 0-7167-8759-8
  42. Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999). Chemical Kinetics and Dynamics (2nd ed.). Prentice Hall. pp. 147–150. ISBN 0-13-737123-3.
  43. Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999). Chemical Kinetics and Dynamics (2nd ed.). Prentice Hall. pp. 147–150. ISBN 0-13-737123-3.
  44. Matthiesen J, Wendt S, Hansen JØ, Madsen GK, Lira E, Galliker P, Vestergaard EK, Schaub R, Laegsgaard E, Hammer B, Besenbacher F (2009). 'Observation of All the Intermediate Steps of a Chemical Reaction on an Oxide Surface by Scanning Tunneling Microscopy'. ACS Nano. 3 (3): 517–26.
  45. Robertson, A.J.B. (1970) Catalysis of Gas Reactions by Metals. Logos Press, London.
  46. Shafiq, Iqrash; Shafique, Sumeer; Akhter, Parveen; Yang, Wenshu; Hussain, Murid (2020-06-23). 'Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review'. Catalysis Reviews. 0: 1–86. doi:10.1080/01614940.2020.1780824. ISSN 0161-4940.
  47. Housecroft, Catherine E.; Sharpe, Alan G. (2005). Inorganic Chemistry (2nd ed.). Pearson Prentice-Hall. p. 805. ISBN 0130-39913-2
  48. Knözinger, Helmut and Kochloefl, Karl (2002) 'Heterogeneous Catalysis and Solid Catalysts' in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim . doi:10.1002/14356007.a05_313
  49. Wei, Hui; Wang, Erkang (2013-06-21). 'Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes'. Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/C3CS35486E. ISSN 1460-4744. PMID 23740388.
  50. Behr, Arno (2002) 'Organometallic Compounds and Homogeneous Catalysis' in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim . doi:10.1002/14356007.a18_215
  51. Elschenbroich, C. (2006) Organometallics. Wiley-VCH: Weinheim. ISBN 978-3-527-29390-2
  52. Nelson, D.L. and Cox, M.M. (2000) Lehninger, Principles of Biochemistry 3rd Ed. Worth Publishing: New York. ISBN 1-57259-153-6.
  53. Catalytic Antibodies Simply Explained. Documentroot.com (2010-03-06). Retrieved on 2015-11-11.
  54. Solovev, Alexander A.; Sanchez, Samuel; Mei, Yongfeng; Schmidt, Oliver G. (2011). 'Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide'. Physical Chemistry Chemical Physics. 13 (21): 10131–35.
  55. Hävecker, Michael; Wrabetz, Sabine; Kröhnert, Jutta; Csepei, Lenard-Istvan; Naumann d'Alnoncourt, Raoul; Kolen'Ko, Yury V.; Girgsdies, Frank; Schlögl, Robert; Trunschke, Annette (2012). 'Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid'. Journal of Catalysis. 285: 48–60.
  56. Naumann d'Alnoncourt, Raoul; Csepei, Lénárd-István; Hävecker, Michael; Girgsdies, Frank; Schuster, Manfred E.; Schlögl, Robert; Trunschke, Annette (2014). 'The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts'. Journal of Catalysis. 311: 369–385. doi:10.1016/j.jcat.2013.12.008. hdl:11858/00-001M-0000-0014-F434-5.
  57. Mokrani, Touhami; van Reenen, Albert; Amer, Ismael (2015). 'Molecular weight and tacticity effect on morphological and mechanical properties of Ziegler–Natta catalyzed isotactic polypropylenes'. Polímeros. 25 (6): 556–563. doi:10.1590/0104-1428.2158 . ISSN 0104-1428
  58. Dub, Pavel A.; Gordon, John C. (2018). 'The role of the metal-bound N–H functionality in Noyori-type molecular catalysts'. Nature Reviews Chemistry. 2 (12): 396–408. doi:10.1038/s41570-018-0049-z. S2CID 106394152
  59. Dub, Pavel A.; Gordon, John C. (2018). 'The role of the metal-bound N–H functionality in Noyori-type molecular catalysts'. Nature Reviews Chemistry. 2 (12): 396–408. doi:10.1038/s41570-018-0049-z. S2CID 106394152
  60. Rayner-Canham, Marelene; Rayner-Canham, Geoffrey William (2001). Women in Chemistry: Their Changing Roles from Alchemical Times to the Mid-Twentieth Century. American Chemical Society. ISBN 978-0-8412-3522-9
  61. Berzelius, J.J. (1835) Årsberättelsen om framsteg i fysik och kemi [Annual report on progress in physics and chemistry]. Stockholm, Sweden: Royal Swedish Academy of Sciences. After reviewing Eilhard Mitscherlich's research on the formation of ether, Berzelius coins the word katalys (catalysis) on p. 245
  62. Mitscherlich, E. (1834). 'Ueber die Aetherbildung' [On the formation of ether]. Annalen der Physik und Chemie. 31 (18): 273–82. Bibcode:1834 AnP...107..273M
  63. Döbereiner (1822). 'Glühendes Verbrennen des Alkohols durch verschiedene erhitzte Metalle und Metalloxyde' [Incandescent burning of alcohol by various heated metals and metal oxides]. Journal für Chemie und Physik. 34: 91–92.
  64. Döbereiner (1823). 'Neu entdeckte merkwürdige Eigenschaften des Platinsuboxyds, des oxydirten Schwefel-Platins und des metallischen Platinstaubes' [Newly discovered remarkable properties of platinum suboxide, oxidized platinum sulfide and metallic platinum dust]. Journal für Chemie und Physik. 38: 321–26.
  65. Davy, Humphry (1817). 'Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continued light in mixtures of inflammable gases and air without flame'. Philosophical Transactions of the Royal Society of London. 107: 77–85. doi:10.1098/rstl.1817.0009.
  66. Roberts, M.W. (2000). 'Birth of the catalytic concept (1800–1900)'. Catalysis Letters. 67 (1): 1–4. doi:10.1023/A:1016622806065. S2CID 91507819
  67. Nicholas, Christopher P. (21 August 2018). 'Dehydration, Dienes, High Octane, and High Pressures: Contributions from Vladimir Nikolaevich Ipatieff, a Father of Catalysis'. ACS Catalysis. 8 (9): 8531–39. doi:10.1021/acscatal.8b02310.
  68. Dhara SS; Umare SS (2018). A Textbook of Engineering Chemistry. India: S. Chand Publishing. p. 66. ISBN 9789352830688
  69. Laidler, K.J. (1978) Physical Chemistry with Biological Applications, Benjamin/ Cummings . pp. 415–17. ISBN 0-8053-5680-0
  70. Lindlar, H. and Dubuis, R. (2016). 'Palladium Catalyst for Partial Reduction of Acetylenes'. Organic Syntheses. doi:10.15227/orgsyn.046.0089.; Collective Volume, 5, p. 880
  71. Jencks, W.P. (1969) Catalysis in Chemistry and Enzymology McGraw-Hill, New York. ISBN 0-07-032305-4
  72. Bender, Myron L; Komiyama, Makoto and Bergeron, Raymond J (1984) The Bioorganic Chemistry of Enzymatic Catalysis Wiley-Inter. science, Hoboken, U.S. ISBN 0-471-05991-9.
  73. Duran A, Dogan HN, Rollas S. Synthesis and preliminary anticancer activity of new 1,4-dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones. Farmaco. 2002;57:559–564
  74. El Shehry MF, Abu-Hashem AA, El-Telbani EM. Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo (thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents. Eur J Med Chem. 2010;45:1906–1911.
  75. Gadad AK, Noolvi MN, Karpoormath RV. Synthesis and anti-tubercular activity of a series of 2-sulfonamido /trifluoromethyl-6-substituted imidazo-[2,1-b]-1,3,4-thiadiazole derivatives. Bioorg Med Chem. 2004;12:5651–5659.
  76. Gülerman NN, Doğan HN, Rollas S, Johansson C, Çelik C. Synthesis and structure elucidation of some new thioether derivatives of 1,2,4-triazoline-3-thiones and their antimicrobial activities. Farmaco. 2001;56:953–958.
  77. Holmwood G, Buechel KH, Plempel M, Haller J (1982) Antimicrobial azoles. Chem Abstr 96:62979s. Patent RFN DE 3018865, 1981
  78. Kaplaushenko AH, Panasenko OI, Knish EH, Scherbina RO. Synthesis, physicochemical and biological properties of 2-(5-R1-4-R2-1,2,4-triazol-3-ylthio)acetic acids. Farm Zh. 2008;2:67–72.
  79. Klimešová V, Zahajská L, Waisser K, Kaustová J, Möllmann U. Synthesis and antimycobacterial activity of 1,2,4-triazole 3-benzylsulfanyl derivatives. Farmaco . 2004;59:279–288. doi: 10.1016/j.farmac.2004 .01.006 .
  80. Kumar D, Kumar NM, Chang K-H, Shah K. Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles . Eur J Med Chem. 2010;45:4664–4668. doi: 10.1016/j .ejmech.2010.07.023.
Download PDF
Back