Details



IDENTIFICATION OF POLYMERS BY NMR AND IR SPECTRA

Shipra Singhal

31-44

Vol. 5, Jan-Jun, 2017

Date of Submission: 2017-01-05 Date of Acceptance: 2017-02-03 Date of Publication: 2017-02-15

Abstract

Due to the growing interest in nanocomposites, a molecular characterization of these materials is essential for the understanding of their properties and for the development of new materials. Spectroscopic techniques that bring information at a molecular level are unavoidable when characterizing polymers, fillers and composites. Selected examples of the application of fluorescence, solid-state nuclear magnetic resonance (NMR), infrared and Raman spectroscopes, illustrate the potential of these techniques for the analysis of the filler surface, the evaluation of the state of filler dispersion in the host matrix, the extent of interaction between the polymer and the filler particles or the dynamics of polymer chains at the polymer–filler interface.

References

  1. Jancar, J.; Douglas, J.F.; Starr, F.W.; Kumar, S.K.; Cassagnau, P.; Lesser, A.J.; Sternstein, S.S.; Buehler, M.J.Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010, 51, 3321–3343.
  2. Bokobza, L. Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. C J. Carbon Res. 2017, 3, 10.
  3. Bokobza, L. The reinforcement of elastomeric networks by fillers. Macromol. Mater. Eng. 2004, 289, 607–621
  4. Wang, S.B.; Mark, J.E. In-situ precipitation of reinforcing titania fillers. Polym. Bull. 1987, 17, 271–277.
  5. Mark, J.E. Novel reinforcement techniques for elastomers. J. Appl. Polym. Sci. 1992, 50, 273–282.
  6. McCarthy, D.W.; Mark, J.E.; Schaefer, D.W. Synthesis, structure, and properties of hybrid organic-Iinorganic composites based on polysiloxanes. I. Poly(dimethylsiloxane) elastomers containing silica. J. Polym. Sci.Part B 1998, 36, 1167–1189.
  7. Yuan, Q.W.; Mark, J.E. Reinforcement of poly(dimethylsiloxane) networks by blended and in-situ generated silica fillers having various sizes, size distributions, and modified surfaces. Macromol. Chem. Phys. 1999, 2000
  8. Hajji, P.; David, L.; Gerard, J.F.; Pascault, J.P.; Vigier, G. Synthesis, structure and morphology of polymer-silica hybrid nanocomposites based on hydroxyetyl J. Polym. Sci. Part B 1999, 37, 3172–3187.
  9. Matejka, L.; Dukh, O.; Kolaˇr ˘ ík, J. Reinforcement of crosslinked rubbery epoxies by in-situ formed silica.Polymer 2000, 41, 1449–1459.
  10. Matejka, L.; Dukh, O. Organic-inorganic hybrid networks. Macromol. Symp. 2001, 171, 181–188.
  11. Dewimille, L.; Bresson, B.; Bokobza, L. Synthesis, structure and morphology of poly(dimethylsiloxane) Polymer 2005, 46, 4135–4143
  12. Bokobza, L.; Diop, A.L. Reinforcement of poly(dimethylsiloxane) by sol-gel in situ generated silica andtitania particles. eXPRESSPolym. Lett. 2010, 4, 355–363.
  13. Wen, J.; Mark, J.E. Precipitation of silica-titania mixed-oxide fillers into poly(dimethylsiloxane) networks. Rubber Chem. Technol. 1994, 67, 806–819
  14. Breiner, J.M.; Mark, J.E. Preparation, structure, growth mechanisms and containing silica, titania or mixed silica-titania phases. Polymer 1998, 39, 5483–5493.
  15. Giannelis, E.P. Polymer Layered Silicate composites. Adv. Mater. 1996, 8, 29–35.
Download PDF
Back